Engaging plots, made easy.

Easily turn your data into engaging visualizations. Powerful API for coders. Powerful app for everyone.

main.py
notebook.ipynb
main.rs
from plotapi import Chord

Chord(matrix, names).show()

Visualizations

Pareto Front

Everything you need to create beautiful, engaging, and interactive Pareto Front visualizations.


Importing PlotAPI Pareto Front

Let's import ParetoFront from the PlotAPI package.

from plotapi import ParetoFront

We've already activated our license with the license activation instructions.

Data structure

PlotAPI Pareto Front expects at minimum a list of dictionary items, these will define bi-objective solutions over time.

samples = [
    {'order': 20200101, 'objv_1': 40, 'objv_2': 12},   
    {'order': 20200101, 'objv_1': 40, 'objv_2': 12},   
    {'order': 20200101, 'objv_1': 40, 'objv_2': 12},   

    {'order': 20200104, 'objv_1': 40, 'objv_2': 12},   
    {'order': 20200104, 'objv_1': 40, 'objv_2': 12},   
    {'order': 20200104, 'objv_1': 40, 'objv_2': 14},   

    {'order': 20200109, 'objv_1': 40, 'objv_2': 12},   
    {'order': 20200109, 'objv_1': 45, 'objv_2': 12},   
    {'order': 20200109, 'objv_1': 45, 'objv_2': 10},   

    {'order': 20200112, 'objv_1': 50, 'objv_2': 12},   
    {'order': 20200112, 'objv_1': 50, 'objv_2': 11},   
    {'order': 20200112, 'objv_1': 50, 'objv_2': 10},   

    {'order': 20200115, 'objv_1': 50, 'objv_2': 12},   
    {'order': 20200115, 'objv_1': 50, 'objv_2': 12},   
    {'order': 20200115, 'objv_1': 50, 'objv_2': 12},   

    {'order': 20200115, 'objv_1': 50, 'objv_2': 12},   
    {'order': 20200115, 'objv_1': 50, 'objv_2': 12},   
    {'order': 20200115, 'objv_1': 50, 'objv_2': 12},   

    {'order': 20200120, 'objv_1': 60, 'objv_2': 8},   
    {'order': 20200120, 'objv_1': 60, 'objv_2': 8},   
    {'order': 20200120, 'objv_1': 60, 'objv_2': 8},   

    {'order': 20200123, 'objv_1': 60, 'objv_2': 8},   
    {'order': 20200123, 'objv_1': 60, 'objv_2': 8},   
    {'order': 20200123, 'objv_1': 60, 'objv_2': 8},   
    {'order': 20200123, 'objv_1': 80, 'objv_2': 3},  
    {'order': 20200123, 'objv_1': 30, 'objv_2': 20},  

    {'order': 20200125, 'objv_1': 30, 'objv_2': 20},  
    {'order': 20200125, 'objv_1': 10, 'objv_2': 20}, 

    {'order': 20200129, 'objv_1': 120, 'objv_2': 50},  
    {'order': 20200129, 'objv_1': 50, 'objv_2': 120},   
    {'order': 20200129, 'objv_1': 50, 'objv_2': 120},   
    {'order': 20200129, 'objv_1': 50, 'objv_2': 120},    

    {'order': 20200130, 'objv_1': 100, 'objv_2': 100},      
]

We can see that each dictionary item has three properties:

  • order which determines with time period this item belongs to. This should be numerical, but can be formatted e.g. as dates.
  • objv_1 the first objective value, e.g. "weight".
  • objv_2 the second objective value, e.g. "reps".

We can also populate the events structure to present event text at specific times.

events = [
    {
        "order": 20200101,
        "event": "My first ever gym visit!"
    },
    {
        "order": 20200109,
        "event": "I went a little heavier today!"
    },
    {
        "order": 20200120,
        "event": "Three solid sets of 60 kg!"
    },
    {
        "order": 20200129,
        "event": "Broke some records today!"
    }
]

Default visualization

Creating our first Pareto Front Diagram is as easy as calling PlotAPI with our one input.

Be sure to interact with the visualisation to see what the default settings can do!

ParetoFront(samples, events=events, title="Barbell Bench Press",
            objv_1_unit=" kg", objv_2_unit=" reps",
            x_label="Weight(kg)", y_label="Reps").show()
Previous
Heat Map