Visualizations Showcase
StamiStudios.com Everyday Ita Bag - Panels and Colours
StamiStudios.com Everyday Ita Bag - Panels and Colours
Preamble
import numpy as np # for multi-dimensional containers
import pandas as pd # for DataFrames
import itertools
from plotapi import Chord
Introduction
In previous sections, we visualised co-occurrences of Pokémon type. Whilst it was interesting to look at, the dataset only contained Pokémon from the first six geerations. In this section, we're going to use the TidyTuesday Animal Crossing villagers dataset to visualise the relationship between Species and .
The Dataset
The dataset documentation states that we can expect 13 variables per each of the 1017 Pokémon of the first eight generations.
Let's download the mirrored dataset and have a look for ourselves.
data_url = 'https://datacrayon.com/datasets/stami_bags_panel_colour.csv'
data = pd.read_csv(data_url)
data.head()
panel | colour | |
---|---|---|
0 | Heart | Pink |
1 | Circle | lilac |
2 | Sakura | Mint |
3 | circle | mint |
4 | Animal | Black |
#data['Country.of.Origin'][data['Country.of.Origin'] == 'United States (Hawaii)'] = 'Hawaii'
#data['Country.of.Origin'][data['Country.of.Origin'] == 'Tanzania, United Republic Of'] = 'Tanzania'
#data = data[data.Variety != 'Other']
data = data[data.notna()]
data = data[data['panel'].isin(list(data['panel'].value_counts()[:20].index))]
data = data[data['colour'].isin(list(data['colour'].value_counts()[:11].index))]
capitalise the name, personality, and species of each villager.
data['panel'] = data['panel'].str.capitalize()
data['colour'] = data['colour'].str.capitalize()
It looks good so far, but let's confirm the 13 variables against 1017 samples from the documentation.
data.shape
(3040, 2)
d_colours = list(data.colour.value_counts().index)
d_colours.sort()
d_colours
['Black', 'Blue', 'Green', 'Lilac', 'Mint', 'Navy', 'Pink', 'White', 'Yellow']
Perfect, that's exactly what we were expecting.
Data Wrangling
We need to do a bit of data wrangling before we can visualise our data. We can see from the columns names that the Pokémon types are split between the columns Type 1
and Type 2
.
So let's select just these two columns and work with a list containing only them as we move forward.
species_personality = pd.DataFrame(data[['colour', 'panel']].values).dropna().astype(str)
species_personality
0 | 1 | |
---|---|---|
0 | Pink | Heart |
1 | Mint | Sakura |
2 | Black | Animal |
3 | White | Circle |
4 | White | Star |
... | ... | ... |
3035 | Blue | Circle |
3036 | White | Circle |
3037 | White | Heart |
3038 | White | Circle |
3039 | Black | Circle |
3040 rows × 2 columns
species_personality = species_personality.dropna()
Now for the names of our types.
#left = np.unique(pd.DataFrame(species_personality)[0]).tolist()
left = list(data['colour'].value_counts().index)[::-1]
#left.sort()
pd.DataFrame(left)
0 | |
---|---|
0 | Yellow |
1 | Green |
2 | Blue |
3 | Navy |
4 | Mint |
5 | Lilac |
6 | Pink |
7 | White |
8 | Black |
#right = np.unique(pd.DataFrame(species_personality)[1]).tolist()
right = list(data['panel'].value_counts().index)
#right.sort()
pd.DataFrame(right)
0 | |
---|---|
0 | Circle |
1 | Star |
2 | Crescent |
3 | Moon |
4 | Bat wings |
5 | Sakura |
6 | Heart |
7 | Dice20 |
8 | Frog |
9 | Animal |
10 | Feline-ears |
11 | Cat |
12 | Angel-wings |
13 | Hive |
14 | Bottle |
15 | Paw |
16 | Petals |
17 | Pixel |
18 | Citrus |
Which we can now use to create the matrix.
features= left+right
d = pd.DataFrame(0, index=features, columns=features)
Our chord diagram will need two inputs: the co-occurrence matrix, and a list of names to label the segments.
We can build a co-occurrence matrix with the following approach. We'll start by creating a list with every type pairing in its original and reversed form.
species_personality = list(itertools.chain.from_iterable((i, i[::-1]) for i in species_personality.values))
for x in species_personality:
d.at[x[0], x[1]] += 1
d=d/(d.values.sum()/2)*100
d
Yellow | Green | Blue | Navy | Mint | Lilac | Pink | White | Black | Circle | ... | Animal | Feline-ears | Cat | Angel-wings | Hive | Bottle | Paw | Petals | Pixel | Citrus | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yellow | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.032895 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.230263 | 0.000000 | 0.032895 | 0.032895 | 0.000000 | 0.855263 |
Green | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.032895 |
Blue | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.394737 | ... | 0.296053 | 0.197368 | 0.164474 | 0.164474 | 0.000000 | 0.361842 | 0.098684 | 0.000000 | 0.098684 | 0.000000 |
Navy | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.625000 | ... | 0.131579 | 0.098684 | 0.263158 | 0.000000 | 0.164474 | 0.328947 | 0.131579 | 0.065789 | 0.098684 | 0.098684 |
Mint | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.361842 | ... | 0.098684 | 0.000000 | 0.131579 | 0.032895 | 0.065789 | 0.098684 | 0.263158 | 0.065789 | 0.197368 | 0.263158 |
Lilac | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.723684 | ... | 0.493421 | 0.296053 | 0.493421 | 0.032895 | 0.098684 | 0.460526 | 0.296053 | 0.526316 | 0.263158 | 0.065789 |
Pink | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.986842 | ... | 0.427632 | 0.328947 | 0.361842 | 0.263158 | 0.263158 | 0.032895 | 0.328947 | 0.789474 | 0.394737 | 0.164474 |
White | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 2.927632 | ... | 1.348684 | 0.493421 | 0.493421 | 2.861842 | 0.625000 | 0.361842 | 0.263158 | 0.657895 | 0.197368 | 0.361842 |
Black | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 7.796053 | ... | 1.940789 | 3.289474 | 2.138158 | 0.427632 | 1.743421 | 1.315789 | 0.953947 | 0.098684 | 0.953947 | 0.164474 |
Circle | 0.032895 | 0.000000 | 0.394737 | 0.625000 | 0.361842 | 0.723684 | 0.986842 | 2.927632 | 7.796053 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Star | 0.098684 | 0.000000 | 0.625000 | 0.427632 | 0.493421 | 0.723684 | 1.118421 | 1.513158 | 3.684211 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Crescent | 0.098684 | 0.000000 | 0.328947 | 0.657895 | 0.197368 | 0.789474 | 1.743421 | 0.855263 | 3.256579 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Moon | 0.164474 | 0.000000 | 0.690789 | 0.855263 | 0.361842 | 0.921053 | 0.723684 | 0.953947 | 3.059211 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Bat wings | 0.000000 | 0.000000 | 0.098684 | 0.230263 | 0.032895 | 0.394737 | 0.065789 | 0.197368 | 6.644737 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Sakura | 0.000000 | 0.000000 | 0.230263 | 0.065789 | 0.197368 | 0.394737 | 3.026316 | 0.953947 | 1.414474 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Heart | 0.000000 | 0.000000 | 0.164474 | 0.098684 | 0.164474 | 0.592105 | 1.940789 | 0.888158 | 1.743421 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Dice20 | 0.000000 | 0.000000 | 0.164474 | 0.328947 | 0.230263 | 0.493421 | 0.394737 | 0.427632 | 2.993421 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Frog | 0.000000 | 2.565789 | 0.065789 | 0.000000 | 1.907895 | 0.098684 | 0.328947 | 0.032895 | 0.000000 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Animal | 0.000000 | 0.000000 | 0.296053 | 0.131579 | 0.098684 | 0.493421 | 0.427632 | 1.348684 | 1.940789 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Feline-ears | 0.000000 | 0.000000 | 0.197368 | 0.098684 | 0.000000 | 0.296053 | 0.328947 | 0.493421 | 3.289474 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Cat | 0.000000 | 0.000000 | 0.164474 | 0.263158 | 0.131579 | 0.493421 | 0.361842 | 0.493421 | 2.138158 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Angel-wings | 0.000000 | 0.000000 | 0.164474 | 0.000000 | 0.032895 | 0.032895 | 0.263158 | 2.861842 | 0.427632 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Hive | 0.230263 | 0.000000 | 0.000000 | 0.164474 | 0.065789 | 0.098684 | 0.263158 | 0.625000 | 1.743421 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Bottle | 0.000000 | 0.000000 | 0.361842 | 0.328947 | 0.098684 | 0.460526 | 0.032895 | 0.361842 | 1.315789 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Paw | 0.032895 | 0.000000 | 0.098684 | 0.131579 | 0.263158 | 0.296053 | 0.328947 | 0.263158 | 0.953947 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Petals | 0.032895 | 0.000000 | 0.000000 | 0.065789 | 0.065789 | 0.526316 | 0.789474 | 0.657895 | 0.098684 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Pixel | 0.000000 | 0.000000 | 0.098684 | 0.098684 | 0.197368 | 0.263158 | 0.394737 | 0.197368 | 0.953947 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Citrus | 0.855263 | 0.032895 | 0.000000 | 0.098684 | 0.263158 | 0.065789 | 0.164474 | 0.361842 | 0.164474 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
28 rows × 28 columns
Chord Diagram
Time to visualise the co-occurrence of types using a chord diagram. We are going to use a list of custom colours that represent the types.
colors =["#ffe75f", "#85e063", "#aed6f8", "#1e3c6f", "#affec6", "#d3b0e7", "#fedbe8", "#f5f4e9", "#222222", "#f7a296", "#f48fb1", "#ce93d8", "#a9a3db", "#89cffa", "#80deea", "#80cbc4", "#a5d6a7", "#e6ee9c", "#fff59d", "#ffe082", "#ffcc80", "#f7a296", "#f06292", "#a76fcb", "#7986cb", "#64b5f6", "#4ecaec", "#4db6ac"]
names = left + right
Finally, we can put it all together.
Chord(
d.values.round(2).tolist(),
names,
colors=colors,
margin=70,
noun="percent",
details_separator="",
bipartite=True,
bipartite_idx=len(left),
bipartite_size=0.5,
width=850,
).show()
import json
data = {"matrix": d.values.round(2).tolist(),
"names": names,
"colors": colors,
"bipartite_idx": len(left)}
with open("stamistudios.json", "w") as fp:
json.dump(data, fp)