Plotapi, beautiful by default.

Let plotapi do the heavy lifting – enabling beautiful interactive visualisations with a single line of code (instead of hundreds).

Get Plotapi

Changing Ribbon Opacity

Preamble

In [1]:
from plotapi import Chord

Chord.set_license("your username", "your license key")

Introduction

We can change the opacity of the inner section of our Chord diagram, or the ribbons. The opacity will change on mouseover to highlight the selected connections.

As we can see, we have set our license details in the preamble with Chord.set_license()

Dataset

Chord expects a list of names (list[str]) and a co-occurence matrix (list[list[float]]) as input.

In [2]:
matrix = [
    [0, 5, 6, 4, 7, 4],
    [5, 0, 5, 4, 6, 5],
    [6, 5, 0, 4, 5, 5],
    [4, 4, 4, 0, 5, 5],
    [7, 6, 5, 5, 0, 4],
    [4, 5, 5, 5, 4, 0],
]

names = ["Action", "Adventure", "Comedy", "Drama", "Fantasy", "Thriller"]

It may look more clear if we present this as a table with the columns and indices labelled. This is entirely optional.

In [3]:
import pandas as pd
pd.DataFrame(matrix, columns=names, index=names)
Out[3]:
Action Adventure Comedy Drama Fantasy Thriller
Action 0 5 6 4 7 4
Adventure 5 0 5 4 6 5
Comedy 6 5 0 4 5 5
Drama 4 4 4 0 5 5
Fantasy 7 6 5 5 0 4
Thriller 4 5 5 5 4 0

Visualisation

The opacity parameter controls the ribbon opacity for Chord. This value must be a float between or equal to $0.0$ and $1.0$.

Be sure to interact with the visualisation to see what the default settings can do!

In [4]:
Chord(matrix, names, opacity=0.2).show()
Plotapi - Chord Diagram

You can do so much more than what's presented in this example, and we'll cover this in later sections. If you want to see the full list of growing features, check out the Plotapi Documentation. and the Plotapi Gallery.

Made with Plotapi

You can create beautiful, interactive, and engaging visualisations like this one in any programming language with Plotapi.

Get the Books

Enjoying these notebooks and want more on the subject? Check out the practical books on Data Science, Visualisation, and Evolutionary Algorithms.

Get the books