{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Preamble" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from plotapi import Chord\n", "\n", "Chord.set_license(\"your username\", \"your license key\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction\n", "\n", "Plotapi Chord now supports asymmetric diagrams by turning symmetric mode off. This allows each end of a ribbon to be of different length depending on the co-occurrence matrix, and it also changes the information presented in the popup.\n", "\n", "

\"Asymmetric

\n", "\n", "As we can see, we have set our license details in the preamble with `Chord.set_license()`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Dataset" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Chord expects a list of names (`list[str]`) and a co-occurence matrix (`list[list[float]]`) as input." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "matrix = [\n", " [0, 5, 3, 4, 7, 3],\n", " [2, 0, 6, 5, 2, 7],\n", " [6, 3, 0, 4, 5, 7],\n", " [8, 3, 4, 0, 4, 7],\n", " [2, 8, 6, 7, 0, 4],\n", " [5, 3, 3, 4, 2, 0],\n", "]\n", "\n", "names = [\"Action\", \"Adventure\", \"Comedy\", \"Drama\", \"Fantasy\", \"Thriller\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It may look more clear if we present this as a table with the columns and indices labelled. This is entirely optional." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ActionAdventureComedyDramaFantasyThriller
Action053473
Adventure206527
Comedy630457
Drama834047
Fantasy286704
Thriller533420
\n", "
" ], "text/plain": [ " Action Adventure Comedy Drama Fantasy Thriller\n", "Action 0 5 3 4 7 3\n", "Adventure 2 0 6 5 2 7\n", "Comedy 6 3 0 4 5 7\n", "Drama 8 3 4 0 4 7\n", "Fantasy 2 8 6 7 0 4\n", "Thriller 5 3 3 4 2 0" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "pd.DataFrame(matrix, columns=names, index=names)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Visualisation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To enable asymmetric mode, we set the `symmetric` parameter to `False`.\n", "\n", "Here we're using `.show()` which outputs to a Jupyter Notebook cell, however, we may want to output to a HTML file with `.to_html()` instead. More on the different output methods later!\n", "\n", "Be sure to interact with the visualisation to see what the default settings can do!\n", "
" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n", "Plotapi - Chord Diagram\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
\n", " \n", " \n", " \n", "\n", "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "Chord(matrix, names, colors=\"cool\", symmetric=False).show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can do so much more than what's presented in this example, and we'll cover this in later sections. If you want to see the full list of growing features, check out the Plotapi Documentation. and the Plotapi Gallery." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 4 }